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Researchers are currently focusing on the electromagnetic and microwave

absorption properties of SrFe12O19 hexaferrites. The high-temperature

absorption (more than 573 K) is highly demanded in various including the

military, national defense, aviation, and other fields. SrFe12O19 has good

thermal stability at high temperature, and it has large coercivity, which also

determines that it has good stability in magnetic properties and is not easy to be

affected by the environment. Thus, it is necessary to explore the magnetic

characteristics of SrFe12O19 hexaferrites at high temperatures. SrFe12O19

hexaferrites were fabricated by the molten salt method and their

microstructure, high-temperature electromagnetic properties, and

microwave properties were investigated in detail. The complex permeability

and permittivity of SrFe12O19 were measured at varying temperatures

(293–673 K) in the X band. While the real parts of permittivity and

permeability increased with the increasing temperature, the imaginary parts

of permittivity and permeability did not change significantly with increasing

temperature. The calculated absorption properties displayed that as

temperature increased from 293K to 623K, the frequency of the RL peaks

moved to a low-frequency direction, and the sample’s minimum value of RL

could be smaller than -10dB across the whole X band. The results indicate that

SrFe12O19 particles have better absorption properties and can be used in high-

temperature environments. These particles can be possibly used in many

particular fields.
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Introduction

Microwave absorption materials are widely used in computers, communication,

household appliances, national defense, and military fields, especially in the GHz

band. Consequently, the investigation into the microwave absorption capabilities of

materials has always been a major concern. The electromagnetic parameter is directly
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related to the microwave absorption capabilities of absorbent

materials. Efforts have been made to improve high-frequency

electromagnetic efficiency as demands for GHz-band

microwave absorbers have grown significantly (Li et al.,

2014; Mehdipour and Shokrollahi, 2013; Zheng et al., 2016;

Li et al., 2015). Therefore, it is essential to use a stable

magnetic material. As absorbing materials, ferrites and

metallic magnetic materials with a magnetic loss

mechanism have been extensively studied (Mehdipour and

Shokrollahi, 2013; Zheng et al., 2016; Li et al., 2015). Typically,

metallic magnetic materials have a low resistivity, which could

lead to a significant eddy current loss in the GHz frequency

range, hence limiting their technological applications.

Meanwhile, ferrites are considered to be the optimal choice

for industrial applications due to their high resistivity,

minimal eddy current loss, high saturation magnetization,

and outstanding electromagnetic characteristics (Tang et al.,

2016; Zhang et al., 2016; Ye et al., 2015).

Due to the Snoek’s limit, the cut-off frequency for typical soft

spinel ferrite, such as NiZnFe2O4 or MnFe2O4, is as low as a few

MHz despite the material’s considerable permeability at low

frequencies (Ghasemi and Mousavinia, 2014). However, to

obtain a ferrite with a high cut-off frequency, the effective

anisotropy field must be increased. As M-type SrFe12O19 is a

typical hexagonal ferrite, with a high magnetocrystalline

anisotropy field that is primarily used as a permanent

magnet material due to its high coercive force, relatively

high saturation magnetization, and high Curie temperature,

as well as its high dielectric loss, good chemical stability, and

corrosion resistance, it has attracted the attention of

researchers, especially, about their electromagnetic and

microwave absorption properties [Nie et al., 2010; Wang

et al., 2001; Ghasemi et al., 2006; Zi et al., 2009; Fathi

et al., 2020]. Due to the thermal impacts of the devices or

particular working requirements for high-temperature,

microwave devices typically run at temperatures greater

than room temperature. Thus, it is necessary to explore

microwave absorption performance of absorbing materials

at high temperatures (Cao et al., 2010; Luo et al., 2017; Shi

et al., 2008; Yuan et al., 2017). Many research groups use pure

dielectric materials with outstanding thermal stability as

absorbing materials, such as graphite, carbon nanosheets,

SiC fiber, BiFeO3 and so on, to study their microwave

absorption performance at high temperature (Shi et al.,

2008; Song et al., 2009; Li et al., 2015; Li et al., 2016; Lu

et al., 2016; Li et al., 2018; Li et al., 2019; Yuan et al., 2017;

Guan et al., 2022; Li et al., 2022; Mu et al., 2022). It is reported

that all the RL can exceed -10 dB in the whole X band at

elevated temperature (573–873 K). SrFe12O19 has good

thermal stability at high temperature, and it has large

coercivity, which also determines that it has good stability

in magnetic properties and is not easy to be affected by the

environment. Therefore, it is necessary to study the high-

temperature absorption of SrFe12O19. However, currently,

there is no research on its high-temperature

electromagnetic and wave absorption characteristics. This is

due to the difficulty of conducting research at ultra-high

temperatures, the necessity of highly specialized equipment,

and that this kind of test is not mature. Since it is still in the

research phase, no commercially available direct-use

equipment is available. Therefore, we have built a set of

equipment that can test high-temperature electromagnetic

parameters to study the related properties of magnetic

materials.

In this work, M-type SrFe12O19 was prepared by the

molten salt method. M-type SrFe12O19 powder and polymer

were thoroughly mixed, pressed into blocks, subjected to high-

temperature sintering to volatilize the polymer, and then

ferrite blocks were produced. The electromagnetic

properties and SrFe12O19 microwave absorption were then

examined in the entire X band at temperatures ranging from

293 K to 673 K.

Experiment

SrFe12O19 was obtained by the molten salt method, and the

raw materials used in the experiment were strontium carbonate

(SrCO3, 99%), and ferric oxide (Fe2O3, 99%). The mass fraction

of Fe2O3 and SrCO3 is 82.64% and 17.36% respectively. The

molecular formula of M-type ferrite is MFe2nO19, and the

structure of ferrite can be determined that n = 6 in theory,

but the value of n is less than six in the actual configuration

process. This is because some iron-containing substances on the

ball milling tank will be ground into the ingredients in the

process of ball milling, resulting in an increase in the content of

iron in the ingredients. The weighed raw materials were added

to the ball mill tank along with the appropriate amount of

alcohol, and the mixture was allowed to mix for around 30 min.

A suitable amount of alcohol was then added after mixing. Total

alcohol mass to raw material mass was around 1.5:1. The ball

grinding tank was placed in a planetary ball mill with a

revolving speed of 200 r/min. After 2 h of ball grinding, 10%

cosolvent was added, and the abrasive was placed in an oven to

dry at 80°C. After drying, a small amount of dry powder

was placed in a muffle furnace and prefired at different

prefiring temperatures at a heating rate of 5°C/min. The

prefiring temperatures were respectively 1,140°C, 1,160°C,

1,180°C, and 1,200°C for 2 h. After the holding was

completed, turn off the power and allow the sample to drop

to room temperature with the furnace. Finally, the cosolvent in

the sample was washed with distilled water after grinding, and

the sample was air dried to obtain strontium ferrite

powder. Single phase M-type strontium ferrite can be

prepared at all pre-firing temperature points. With the same

formula, that is, the same iron content, the higher the
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temperature, the sharper the diffraction peak, and the stronger

the intensity, indicating that the higher the temperature, the

better the crystallization of the sample, and the smaller the

diameter thickness ratio. However, the diffraction Angle

corresponding to the diffraction peak does not change,

indicating that the increase of the prefiring temperature has

no obvious effect on the lattice constant. Therefore, in this

paper, the sample with a prefiring temperature of 1,200°C was

selected as the research object. The crystallographic and

microstructure properties of SrFe12O19 were analyzed by the

X-ray diffractometer (XRD, X’Pert Pro PANalytical with Cu Kα
radiation) and scanning electron microscope (SEM,

MIRA3 TESCAN), respectively. The static magnetic

characteristics of SrFe12O19 were measured at elevated

temperatures using a vibrating sample magnetometer (VSM,

Micro Sense VSM-EV9). The electromagnetic properties

(complex permittivity and permeability) of the composite at

high temperature were determined using the waveguide

technique and a vector network analyzer (VNA, Agilent

E8363B) in the 8.2–12.4 GHz frequency range. The samples

for this assessment were made as follows: Hexaferrites were

mixed with polyvinyl alcohol (the hexaferrites to paraffin

weight ratio was 5:1), and then pressed into a rectangle flake

with length (22.80 mm), width (10.16 mm), and thickness

(2 mm) at 6 Mpa. Finally, it was heated to 1473 K in an

argon atmosphere and kept there for 2 h.

Results and Discussion

Crystal structure, phase, and component

SEM images of SrFe12O19 samples are shown in Figure 1A,

demonstrating that the sample has a more regular shape and

structure, as well as good particle uniformity. The police force’s

morphology had a regular hexagonal structure, and the particle

diameter thickness ratio is lower. The morphology of SrFe12O19

particles and the standard M phase (PDF 33–1,340) is shown in

Figure 1B, demonstrating that SrFe12O19 is the primary phase

presented by the XRD pattern. The results showed that the

diffraction peak is highly sharp and intense, indicating that

the sample crystallinity is very good, and the SrFe12O19

generated by this approach is a M-type hexagonal ferrite

phase. Figure 1C displays the atomic percentages of various

constituent elements resulting from quantitative EDS analysis

for the SrFe12O19 particles, revealing that the molecular formula

and the atomic ratios of Sr and Fe are in good agreement.

The static magnetic characteristics at high
temperature

The hysteresis loop of SrFe12O19 measured at different

temperatures is depicted in Figure 2A, which reveals that the

FIGURE 1
(A) SEM of SrFe12O19. (B) X-ray diffraction pattern of SrFe12O19. (C) EDS spectra and elemental mappings of the sample.
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saturation magnetization decreased gradually with temperature

increase, then rapidly with temperature increase below the Curie

temperature, until they became zero. At elevated temperatures,

saturation magnetization and remanent magnetization gradually

declined as temperature increased; when the temperature reached

723K, it dropped rapidly; andwhen the temperature continued to rise

to 773K (Figures 2B,C), the original ferrimagnetic phase transformed

into the paramagnetic phase. However, the coercivityfirstly increased

and then decreased gradually declined as temperature increased;

when the temperature continued to rise to 773K, it decreased to zero

(Figure 2D). According to the theory of the spontaneous

magnetization process, when the temperature rises, the atomic

distance increases, reducing the exchange effect. In addition, as a

result of the law of thermal motion’s continual destruction of the

atomic magnetic moment’s orientation, the saturation intensity of

spontaneous magnetization decreases until the temperature exceeds

the Curie point. This leads to the destruction of the atomic magnetic

moment’s regular orientation, the absence of the spontaneous

magnetic moment, and the transition of the material from the

ferrimagnetic phase to the paramagnetic phase.

Electromagnetic parameters at elevated
temperature

High-temperature electromagnetic parameters are mostly

examined using specifically designed testing equipment

(Nayak et al., 2013). The test system consists primarily of a

vector network analyzer, a high-temperature variable and

temperature control system, a water cooling circulation

system, an X-band high-temperature calibration kit, a high-

temperature insulation waveguide, and a constant

temperature waveguide with a water tank, and other

accessories. The vector network analyzer is connected to

the high-temperature insulation waveguide by a rigid cable,

and the waveguide is put in a temperature box heated by

radiation. Simultaneously, the cooling water circulation

system is connected to the connection between the

waveguide end and the cable, and the temperature at the

cable connection point is rapidly lowered. Figure 3 depicts

a waveguide technique high-temperature test device. The

center 100 mm of the furnace is a constant-temperature

zone that may accommodate the needs of high-temperature

testing. Both ends are linked to the cooling water pipe, as

illustrated in Figure 3.

The Thru-Reflect-Line (TRL) calibration method is selected

(Stumper, and Schrader, 2014), and the supporting high-

temperature calibration components and test fixtures are

depicted in Figure 3. The entire device is then linked and

ready for use. First, the test device was calibrated at room

temperature. Secondly, in this calibrated state, the temperature

was increased, and then the Scavity parameter of the cavity at

different temperature points was tested. In the third step, when

the temperature dropped to room temperature, the sample was

FIGURE 2
(A)Magnetic hysteresis loops of the sample. (B)Diagram of saturation magnetization with temperature of the sample. (C) Diagram of remanent
magnetization with temperature of the sample. (D) Diagram of coercivity field with temperature of the sample.
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put into the test fixture, and the Stotal parameter at

different temperature points was tested by increasing the

temperature, so Ssample = Stotal - Scavity, then the real Ssample

parameter of the sample at different temperature points was

obtained. In the last step, the characteristic spectral lines of

electromagnetic parameters varying with frequency at different

temperature points were calculated according to the Ssample

parameter.

The frequency dependency of the complex permittivity

of SrFe12O19 in the X band at high temperature is

illustrated in Figures 4A,B. The results indicated that the

real part (ε′) of permittivity increases with temperature

from 9.43 at 273K to 15.37 at 673K at 8.2GHz, however,

the imaginary part (ε″) does not change much with

temperature. It can also be analyzed that both ε′ and ε″
at varying temperatures, maintain the diagram’s basic

consistency. Debye’s theory helps explain the dependence

of permittivity on temperature (Atwater and Wheeler,

2004),

ε′ � ε∞ + εS − ε∞
1 + (ωτ(T))2, (1)

ε″(ω) � εS − ε∞
1 + (ωτ(T))2 ωτ(T), (2)

where ω represents angular frequency, τ(T) represents

temperature based on relaxing time, εS is static permittivity,

and ε∞ is the relative permittivity at the limit of high

frequency. In accordance with the Arrhenius formula

(Correia and Ramos, 2000), the τ(T) reduces as

temperature rises. According to Eq. 1, a decrease in τ(T)

leads to an increase in ε′. In addition, for oxide

materials, because the frequency of dielectric relaxation

is very high, and the test frequency is significantly lower

than the resonance frequency, so ε″ tends to zero.

Therefore, ε″ have no evident changes as the temperature

changes.

It is known that the ε′ and ε″ represent the ability of

dielectric materials to store and dissipate electric energy,

respectively. Additionally, the dielectric loss can be used to

describe the capacity for dissipating electrical energy. The

results show that its electric energy storage is excellent over

the whole temperature range, below the phase transition

temperature. The ε″ of all the samples are relatively small,

and they do not exhibit any discernible variations in

temperature over their whole range. As a result, the

findings indicate that these hexaferrites have extremely

little dielectric loss.

The frequency dependence of complex permeability of

SrFe12O19 in the X band at high temperature is depicted in

Figures 4C,D. The results show that the permeability of the

real part (μ′) increases with temperature from 1.16 at 273K to

2.17 at 673K at 8.2GHz, but the imaginary part (μ″) does

not change much with temperature. According to the

Hopkinson effect (Buzinaro et al., 2016), the magnetic

FIGURE 3
Waveguide method high-temperature test device, local magnification of water cooling part, high-temperature calibration kit, and test fixture.
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materials’ magnetocrystalline anisotropy constant will reduce as

the temperature rise, which results in a decrease in the effective

field’s overall magnetocrystalline anisotropy, hence μ′ increases
as the temperature rises. Furthermore, because the sample’s

magnetocrystalline anisotropic effective field is very strong, its

resonance frequency is quite high; yet, the test frequency is

significantly lower than the resonance frequency, so μ″ tends

to zero. Therefore, μ″ are unaffected by variations in

temperature.

Microwave absorption performance

The absorption property of materials is extremely

important for certain application scenarios, in which

absorbing materials must operate at extremely high

temperatures; therefore, it is necessary to investigate

whether absorbing materials retain their excellent

absorption property at such temperatures. The RL

represents the sample absorption characteristics for

microwaves. The RL values were calculated with the

complex μ and ε at given thickness d and frequency f based

on the transmission line theory (Buzinaro et al., 2016). When

μ and ε values are measured at different temperatures, RL

values at corresponding temperatures can be calculated. The

RL can be calculated as a function of the input impedance once

it has been normalized, as shown in ref. [26] (Naito and

Suetake, 1971):

RL � 20 log
∣∣∣∣∣∣∣Zin − Z0

Zin + Z0

∣∣∣∣∣∣∣, (3)

Typically, the following calculation can be used to calculate

the normalized input impedance, Zin, of a metal-backed

microwave absorption layer (Wessling, 1991):

Zin � Z0

���
μ/ε√

tanh[j 2πfd ��
με

√
c

], (4)

where Z0 represents the free space’s intrinsic impedance, μ

denotes the sample’s complex relative permeability, ε

represents the relative complex permittivity, f denotes the

electromagnetic wave’s frequency, d represents absorber

thickness, and c is the vacuum velocity of light.

The frequency dependency of the RLs for the sample at

varying temperatures in the X band was determined using Eqs.

3, 4 and plotted in Figure 5 Different colors represent the

RL curve at corresponding temperatures. According to the

theoretical formula, when the thickness is 5 mm, the RL of

FIGURE 4
The results of the VNA samples were summarized. Frequency dependence of the real part (A) and imaginary part of the complex permittivity (B).
Frequency dependence of the real part (C) and imaginary part of the complex permeability (D).
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the sample can be less than -10dB. Moreover, it is revealed that the

minimum value of the sample’s RL can be less than -10dB in the

entire X band from ambient temperature to 623 K; when the

temperature reached 673K, it began to deteriorate. As the

temperature rose to 673K, there were two or three peaks seen in

all samples’ RL curves. Additionally, as the temperature rose to

623K, the frequency of RL peaks shifted to the low-frequency

direction. When the temperature was raised to 673K, this sample

demonstrated remarkable microwave absorption efficiency. During

the whole test, it was held for 15 min at each temperature point. In

the entire X band, the absorption performance has almost remained

unaltered and is still effective. The outcome demonstrated that

SrFe12O19 absorbing materials may retain stable RL performance

at elevated temperatures. In addition, the temperature of SrFe12O19

absorbing material can be regulated to achieve the control of the

absorbing frequency band within the 8–12 GHz frequency range.

Conclusion

In conclusion, SrFe12O19 hexaferrites have been successfully

produced using the molten salt process, and the microstructure,

magnetic characteristics, and microwave properties have been

examined in depth. The XRD analysis revealed that the lattice

parameters of SrFe12O19 exhibit a typical hexagonal surface

morphology. In particular, we evaluated systematically the

changes in electromagnetic characteristics and microwave

absorption performance of SrFe12O19 in the X band at

293–673 K. Temperature increased both the real components of

permittivity and permeability. The temperature had no discernible

effect on either the permittivity or permeability of imaginary parts.

As the temperature increased to 673K, two or three peaks could be

detected in the RL curves of all samples. In addition, as the

temperature reached 623K, the frequency of RL peaks shifted

towards low-frequency. In the X band from ambient temperature

to 623 K, the minimum value of the sample’s RL can be less than

-10dB. All of the results showed that an absorber loaded with

SrFe12O19 particles can be used in a high-temperature

environment and perform well in terms of absorption. In

addition, the temperature of SrFe12O19 absorbing material can be

regulated to achieve the control of the absorbing frequency band

within the 8–12 GHz frequency range.
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